
RESONANT GENERATION OF HARMONIC THERMAL 

WAVES IN MEDIA WITH MEMORY 

I. A. Novikov UDC 536.24 

A problem which is, in principle, new, on the possibility of resonant genera- 
tion of harmonic thermal waves in media with thermal memory, is posedand 
solved. The conditions for stable generation of such waves are elucidated. 

Introduction. Recently, there has been great interest in studies of thermal transport 
processes in media with thermal memory (hereditary thermal media). On the one hand, this 
is related to the great number of such processes in various fields: heat transport in pure 
crystals and dielectrics at low temperatures (ballistic propagation and second sound); ther- 
mal propagation during the action of laser irradiation on a metal; heat transport in regions 
of transitions to a glassy state for organic liquids and polymers; and heat transport in dis- 
perse media. On the other hand, this interest is related to predicted new effects in the 
processes of hereditary heat transport, and also to the possibility of formulating basically 
new problems, which are inherent in these media alone. Thus wave effects of the propagation 
of heat in hereditary media and the possibility, in principle, of the existence of weakly 
damping and amplifying thermal media with memory [i] results in the possibility of develop- 
ing wave thermophysics (analogs of many optical and radiophysics wave phenomena and devices). 
Below it will be shown that in thermal media with memory, it is possible to generate reso- 
nant harmonic thermal waves (TW) of fixed frequency (modes). 

The frequency of the excited TW depends on the thermophysical properties of the memory 
of the medium, the geometry and conditions of heat exchange of the body, and also the inten- 
sity of the applied external fields as well, which create the amplifying thermal medium. This 
phenomenon is analogous to the resonant generation of electromagnetic waves in an optical 
quantum generator (OQG), which analogy also applies to the elements of the OQG necessary for 
wave generation. 

Working Principle of a Thermal Resonant Generator. In order to work, an OQG must have 
an active (inverted population) optical medium [2], and also an open Fabry-Perot optical res- 
onator which provides positive feedback and allows selection of certain modes from the gen- 
erator contour of excited emission lines. In a thermal resonant generator (TRG), the active 
working medium is a specially selected hereditary thermal medium with volume sources idistrib- 
uted in it which are proportional to the temperature. In [i~ 3] it was shown that for the 
transit of TW through such a medium, the TW amplification coefficient exp(- $(m)x)!can be 
greater than one (which corresponds to $(m) < 0). The region of TW amplification me(0, mcr) 
is the thermal analog of the contour of optical excitation lines. Their construction will 
be discussed in detail below. 

The thermal analog of open optical resonance is a rod with thermally insulated lateral 
surface and end face x = 0. At the other end of the rod x = s a boundary condition of the 
third type is prescribed, which simulates the outflux of energy to the external medium. The 
rod is made of an active amplifying thermal-hereditary medium, as described in [i, 3]. In 
practice, to realize this medium, a sufficiently powerful external field is created (electri- 
cal, electromagnetic, etc.). With the help of this field, energy pumping occurs at every 
point in the rod in accordance with the chosen pumping mechanism. Under certain conditions 
described below, such a thermal system has a positive thermal feedback and is the thermal 
equivalent of an optical resonator with a population inversion in its medium. In it, it is 
possible to generate modes in Some TW frequency range me(0, mcr). In this case, random tem- 
perature fluctuations at the rod boundary x = s give an initial broad-band TW spectrum distri- 
bution me(0, ~), but in the process of evolution there arise modes, which are the resonant 
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modes of the resonator (rod). This investigation is made in a linear approximation, and 
therefore nonlinear effects will not be considered, which limits the amplitude of the TW 
generated. Unlike OQG, resonant generation in TRG can be accompanied by asymptotic growth 
(for t + ~) of the temperature field: thermal explosion. Therefore in analyzing TRG oper- 
ation, it is necessary to consider the stability condition for resonant TW generation. 

Mathematical Model for TRG Operation. The mathematical model for the physical problem 
which has been posed is formulated as follows. The governing relation for the hereditary 
thermal medium and the conservation equation for the internal energy have the form 

[ Ou i Ou(x , t - - 'O  dT]; q (x, t) = --  ~o ~,~ (o) -~x + k~ (~) ox 
0 

e(x, t ) - -eo= 
ao k o 

Oe 

Ot 
- -  = - -  div q + ~r (x, t); r - -  ~1 + % (u (x, t) - -  U i ) ,  

The conditions of uniqueness consist of the initial condition u(x, O) = 0 and 3u(x, 0)/ 
3t = 0 for Maxwell media, the condition of thermal insulation q(O, t) = 0 at the boundary 
x = O, and the boundary condition at x = s which simulates the energy outflux: 

q (I, t) = ~ [u (l, t) - -  Uo (1)1; Uo (t) = exp (lot). ( 2 )  

The model of TRG operation with a > 0 is analogous to OQG operation in the continuous genera- 
tion mode. It is assumed that at t = 0, a 6-shaped temperature fluctuation with an ampli- 
tude of one takes place at the x = s By considering an expansion of d(t) in the 
form of a Fourier�9 integral 6(t) = i/2~_~S~exp (i~t)d~ and the linearity of the problem, it 
is possible to examine separately the evolution of each mode exp (i~t), we(0, ~). This cor- 
responds to giving u0(t) in the form of (2). 

_General Expression for the Solution of the Problem. Applying the Laplace transform to 
(i), (taking into account the conditions of uniqueness), the solution to the problem in the 
image domain (denoted by the corresponding capitalized letters) can be written in the form 

F 1 

- -  Do (p) 

+ .  Uo (p) ch h (p) x; 
Do (p) 

D o ( P ) = c h h ( p ) t +  R~ shh(p) l; h(p)= I 
L (p) V ao 

Z(P'= /Pa[CI(p)----~-~ ]AI(P'/~,o9oCo; 

- -  chh(p)x I + 

- -  K (p) = p Q  (p) �9 
' A x (P) ' 

ao a o 
ro ~-~--~o o2; r l  ----~- --~-0 G 1. 

(3) 

In (3), we pass over to the original form, using the theory of residues. 
the posed problem can be represented in the form of a sum: 

u (x, t) = u~,(x) + u~ (x, t) + u~ (x, 1); 

The solution to 

(4) 

Usi = ~., exp (pit) 11 ~ 1 .chh(p~)x]Resf..u,: + q ,!. 
Do (Pz) J [ p [p~C 1 (p) -- ro] f ' 

(5) 

u~ (x, t) = ~ exp (p~t) I Uo(p.O ui' 
Pn [ Pn 

2 Res ch h (p)x ; 
p~ (p~C~ (p.) --  .~ o (p) 

( 6 )  

0,. Do (p,,) 
chh(p~)x IRes;,. {Uo (p)}. (7) 
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In (5)-(7), the symbol Res{'} means that only the singular points (poles) of the expression 
in the curly brackets enter into the equation. The first term describes the steady temper- 
ature field, which arises in the slab due to the initial temperature, and also due to the 
continually acting sources. 

Using the properties of the relaxation function for p + 0, Al(p) = Cz(p) = p-1 [i, 3], 
the steady part of the solution can be written in the form 

( 701[ ' F ] Us(X)= u i - -  ra 1- D0(0) cos --a0 x , 

(8) 

,o l 
Do(0) = cos a0 a0 Bi sin aor~ l. 

The memory o f  t h e  medium does  n o t  i n f l u e n c e  Us(X).  For  r 0 + 0 (o 2 + 0 ) ,  (8 )  t r a n s f o r m s  t o  a 
we l l -known  s t e a d y  t e m p e r a t u r e  d i s t r i b u t i o n  [ 4 ] .  

The second  t e rm  u 2 ( x  , t )  c o r r e s p o n d s  t o  t h e  s t a b i l i t y  ( f o r  t § ~) o f  TRG o p e r a t i o n ,  and 
therefore its analysis gives us the condition of asymptotic stability (without thermal explo- 
sion) of the working regime of the TRG. The third term u3(x , t) describes the unsteady tem- 
perature field due to the effect of the external action U0(p). Its analysis gives the con- 
dition of interest for resonant thermal generation. Its compatibility with the conditions 
of TRG stability determines the possibility of realizing TRG in principle. 

Analysis of the Condition for Resonant Thermal Generation. The term us(x, t) is ob- 
tained for the inversion of (3) to the original space. For this, only the poles Res{U0:(p) } 

Pm 
due to the external action of the temperature at the boundary x = s are considered. This 
part of (3) is conveniently represented in the form of an expansion in terms of exponentials 

U3 (x, p) = o~Z (p) Uo (p) ,~  Ro exp (--2nlh (p)) [exp ( - - ( l - -  x) h (p)) 
t + aZ (p) ~ n = 0  

§ exp (--(l § x) h (p))]; R0 (P) = 
1 -- ~ z  (p) 

1 + e z  (p) 

(9) 

Expansion (9) corresponds to a representation of the transmitted and reflected thermal waves 
in the transformation, with every term in (9) containing two waves: i)exp[--(l -- x)h(p)] propa- 
gating from the boundary x = s to x = 0; and 2) exp[-xh(p)], a wave propagating from x = 0 
to x = s In (9), R0(P) is the sum of the reflection coefficients from the first and second 
boundaries for the image temperature. Since at each boundary, (5) for the transformed tem- 
perature and the thermal flux reflection coefficient are equal in magnitude and opposite in 
sign, R0(p) is the same for the temperature and the flux. The factor exp(-%h(p)) is the ex- 
tinction coefficient for a single transit of the thermal wave through the slab (which is 
also identical for the temperature and the flux). Assuming that there exists only one pole 
in this problem in the original domain, the function us(x, t) for x = ~s takes the form 

u8 (I, t )=  ~Z(ico)exp(io~t) no 
1 + ~Z (ira) ~ [JR0 (io)l exp (--2l~ (m))l n exp (in ~o (o)) 

n ~ 0  

X l1 + exp --2I~ (~) ; ~o (o) = 4~ (~) 
w (~)' t 

(io) 

4- 1 [ReK (i~) + lK (io~)il-Z; w =  t ; 

= ~ IlK ( i ~ ) l -  Re K (i~)1 -~ 

q5 = arg Ro (i~). 

In (i0), n o = ~ for media of the Fourier type, while for Maxwell media n o is determined as 
in [3] ; ~0(m) is the total change in the phase of the thermal wave for a single transit of 
the slab and reflection from its ends; ~(~), w(~) are the extinction coefficient and the 

propagation velocity of the TW. 
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Expansion (i0) makes it possible to formulatethe phase and amplitude conditions for 
the amplification of longitudinal TWs, which are analogous to the conditions of amplifica- 
tion for longitudinal modes in a OQG an the Boyd and Gordon approach [2]. The condition 
for amplification in terms of amplitude is conveniently written in the form 

( ~ ) <  1 lnlRo (i~)l. (11)  
2l 

The condition for phase repetition 

~o(O) = 2~m, m = + l ,  ___2 . . . . .  (12) 

depends on the dimensions of the rod, equilibrium thermophysicai and relaxation properties 
of the material, on the external energy pumping (the coefficient r0) and on the condition 
of heat exchange (the coefficient =). Since [R0(i~) [ ! i, condition (Ii) is more strictly 
analogous to the condition $(~) < 0, obtained in [3] for a semi-infinite rod, and is identi- 
cal with it in the case of ideal thermal contact ~ + ~, IR0(i~)[ = i. In the case of ideal 
thermal contact, (boundary condition of the first type), the "excitation contour" is bounded 
by the axis O~ and the curve $(m), with $(~) < 0, me(0, mcr). In this case, the amplitude 
condition (ii) for TW generation coincides with the condition of TW amplification, analyzed 
in detail in [3]. 

Since for ideal thermal contact (e + ~)R0(i~) = -I; [R0(im) [ = i; r = ~, the phase con- 
dition (12) selecting the longitudinal modes takes the form 

a (2m - -  1) w ( ~ )  
~., = '  , m = 1, 2 . . . .  ( 1 3 )  2l 

Unlike an optical medium, a thermal medium ~s highly dispersive (sensitive dependence of 
w(~)). 

The simultaneous satisfaction of (ii) and (12) leads to the selection and generation of 
one or several TW modes, excited in the TRG from the general "excitation contour" for the 
TWs. In this case, either a finite or infinite number of TW modes can be generated, depend- 
ing on thei"excitation contour." Let us analyze in more detail the case of ideal thermal 
contact. In an ordinary Fourier medium, TW generation is not possible. In any medium of 
the Fourier type, only a finite number of longitudinal TW modes can be generated, since the 
TW "excitation contour" is limited in frequency to me(0, ~cr)- Both bounded and unbounded 
numbers of modes can be generated [3] in Maxwell media. In the standard Maxwell medium, 
corresponding to a hyperbolic equation, only an infinite number of modes can be generated. 
The amplitude of the generated waves rapidly grows in time to become infinite (but in reality 
is limited by nonlinear effects in TRG). As a result of satisfying conditions (ii), (12), 
the solution us(x , t) can be represented in the form 

us(x' t)= aZ(i~ ([ ] [  
l + a Z ( i m m )  exp(Romt ) exp - - ( l - - x ) ~ - - i ( o  m l - x  + e x p  - - ( l + x ) ~ - - i c o m l + x ] l @  K" " 

w w J ] ~ o  ~ '  (14) 

K~:(co,.) = IRo (icom)l exp (-- 2l~ (m~)); o)~ 6 (0, f.oer ). 

Stability Analysis of TRG Operation. The term u2(x, t) is responsible for the stability 
of TRG operation. It arises as a result of the zeroes of the function D0(p) , that is, Pn is 
the root of the equation 

dhh(p)l-@ ~ -- O, (15)  
~Z (p) 

which can be put in the form 

ao 2 
K ~ ) - -  l' ~"( 1); Bi=Bi/pAi(p). (16)  

Here, the correspondence function K(p) has different forms for Fourier and Maxwell thermal 
media; ~n is the root of the equation 

ctg~ = ~ / ~ .  (17) 
Equation (i) itself, source r0, the memory of the medium, the problem geometry, and the con- 
ditions of heat exchange all influence the root Pn- Equation (15) for Pn can result in ei- 
ther real roots or a pair of complex-conjugate roots, which result in real expressions in 
uf(x, t) as well. In analyzing (15) or (16), only the case Repn < 0 for all roots Pn, corre- 
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spends to the stable damped solution (u2(x , t) + 0 for t + ~). Since every value of n in 
(16) may correspond to several roots (this depends on the specific form of K(p)), we will 
denote them by p[k] n, where the superscript k denotes the number of roots corresponding to 
the fixed value n. 

In an ordinary Fourier medium, it(t) = cx(t) = H(t) with volume source o = r0u, it is 
not possible to generate TWs: only thermal explosion is possible. In a Fourier medium of 
more complex form 

13o 1 Xa (t) = 1 -- (1 - -  &a (0)) exp (-- [3ot); Pa = ; ~'o = 
~ (o) ~a (o) 

c a (t) = 1 - -  (1 - -  c~ (0)) exp ( - -  [~ot); d~ = ca (O)/~a (0); 

do = (1 - -  dx)pl; h a = - -  dope; ~1 = Pl (1 - - ? o ) .  

; ( 1 8 )  

to everv index n in (16) there correspond two roots: pn [11, and p[21. By representing the 

root pn[k] in the form pn [k] = --Pl +6n[k] and using (16), we obtain an expression for 6n[k] 

6~ kl = ~--( -  t +_ ~ - 4 d ~ ( h a - - ~ l ~ o ) / ~ b ,  
2da 

~n = (do - -  ro?o) - -  dapl + a#~/ l ' .  

( 1 9 )  

For ideal thermal contact 

~ 2 ( n - - 1 / 2 ) %  n =  1, 2, ~n . . . .  ( 2 0 )  

From an analysis of (19) and (20), it is evident that the region of stable TRG operation 
corresponds to the condition ~n > 0, which gives a bound on r0: 

r--~-~ < 1  + O - - 2 d a ;  O= 1 a o ~ ( 2 1 )  
~o Pl I~ 4 

Here the most strict condition, n = i, has been adopted. The region of TRG stability de- 
pends on the equilibrium thermophysical properties of the material, the thickness of the slab, 
and the properties of the medium memory. Decreasing the thickness of the slab, it is pos- 
sible to adequately expand the region of stable TRG operation. 

[3] obtained in essence the amplitude 
The region of its compatibility with 

2 - -  ~1 (0) 

xa (o) (1 - ~i (o)) 
1. ( 2 2 )  

For the special case of medium (18) with cl(0) = i, 
condition for TW generation for ideal thermal contact. 
(21) is determined by the inequalities 

I r0 
1 - -  ;~x (0) < - ~ o  < 1 + 0 - -  2d~; Ocr = 

Stable TW generation is possible only in some regions of the parameter 8 > 8cr. Using [3], 
it is possible to obtain a relation between the parameters e, ll(0) and mcr: the bounds of 
TW generation (by the amplitude criterion): 

4 --~---- + 1  2 1 <0. ( 2 3 )  
�9 r < - ~  1 - -  xa (o) + xa (o) 

In the generation region, there must be at least one natural mode of the resonator, which 
is determined by the phase condition (13): 

(24) 
2t 

The  j o i n t  s o l u t i o n  o f  ( 2 2 )  and  ( 2 4 )  m a k e s  i t  p o s s i b l e  t o  d e t e r m i n e  8 and  r 0 / ~ 0 .  T h u s ,  i t  
h a s  b e e n  shown t h a t  i n  a F o u r i e r  t h e r m a l  medium w i t h  memory  ( 1 8 ) ,  s t a b l e  r e s o n a n t  t h e r m a l  
generation is possible. 

It can be shown that for ideal thermal contact in the case of the standard Maxwell ther- 
mal medium (hyperbolic equation of thermal conductivity), TW generation (according to ampli- 
tude criterion (12)) and thermal explosion occur simultaneously. Physically, this is obvious 
since the frequency range of TW amplification in such a medium is unbounded we(0, =), which 
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causes the generation of infinitely many modes. Evidently, in the most general Maxwell ther- 
mal media (for more rapid relaxation of the internal energy compared to the thermal flux), 
stable TW generation is possible. 

Conclusions. It has been shown that in the usual Fourier medium and the standard Max- 
well medium, stable TW generation is not possible. In media of the Fourier type of a more 
general form and evidently, in certain Maxwell media, it is possible to generate stable,res- 
onant TWs. I A more precise TRG model must account for the conditions of heat exchange at 
the lateral surface of the rod, and the nonlinear and multidimensional nature of the problem. 

Thus, it has beem proved that it is possible in principle to create a resonant thermal 
generator. To create a TRG in practice requires a broad experimental investigation into the 
area of thermophysics of media with thermal memory, especially concerning the creation of 
amplifying thermal media. 

NOTATION 

u, temperature; q, thermal flux density; e, e0, volumetric density of the internal 
energy and its initial value; a, power of the internal energy sources; Z, slab thickness; 
~, coefficient of heat exchange; %1(t), c1(t) , relaxation functions for the heat flux and the 
internal energy; At(p), CI(P) , their Laplace transforms; p, Laplace variable; %0, a0, equilib- 
rium coefficients of thermal conductivity and thermal diffusivity; ~, angular frequency; ui, 
initial temperature in the system; R T = i/~, thermal resistivity; Bi = ~s Biot number; ~, 
w, extinction coefficient and the propagation velocity of harmonic TWs; r total change in 
the TW phase in one transit of the pane and reflection from its ends; r shift of TW phases 
at the ends of the slab. 

1. 
2. 
3. 
4. 
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